This might seem like way to much information .. but at least scan the bits about CBD and CBN.
TYPES OF CANNABINOIDS
There are at least 80 known cannabinoid compounds that have been isolated from the plant.
THC (Delta-9-Tetrahydrocannabinol), CBD (Cannabidiol) and CBN (cannabinol)
are the most prevalent cannabinoids and have received the most attention in scientific studies.
Other common and lesser cannabinoids are listed below:
- CBG Cannabigerol
- CBC Cannabichromene
- CBL Cannabicyclol
- CBV Cannabivarin
- THCV Tetrahydrocannabivarin
- CBDV Cannabidivarin
- CBCV Cannabichromevarin
- CBGV Cannabigerovarin
- CBGM Cannabigerol Monoethyl Ether
Here follows the breakdown of each of the cannabinoids relevant to the biosynthetic chain that eventually leads to the fully realized THC compound, as well as its degradation product.
CANNABIGEROL (CBG)
CBG is a precursor of higher cannabinoids such as CBC, CBD, THC and there are very small amounts of it in drug strains although it occurs in greater concentrations in hemp. It's a non-psychoactive cannabinoid but it is known for lowering blood pressure and it is also useful for treating mood disorders.
CANNABICHROMENE (CBC)
CBC is nonpsychoactive and it is used as an "energy-storage" compound which is readily converted back to CBG if needed. Some evidence show that CBC may play a role in providing the anti-inflammatory effects of cannabis and that it may also contribute to the overall analgesic or pain killing properties, but further research is needed to verify these assumptions.
CANNABIDIOL (CBD)
Cannabidiol is nonpsychoactive and was initially thought to have no effect on the psycho activity of THC. Recent evidence however show that smokers of cannabis are less likely to experience schizophrenia-like symptoms if there is a higher CBD to THC ratio. Experiments show that participants experienced less intense psychotic effects when intravenous THC was co-administered with CBD. It has been hypothesized that CBD acts as an allosteric antagonist at the CB1 receptor and thus alters the psychoactive effects of THC, resulting in a more easily manageable high.
CBD is generally considered to have more medicinal properties than THC. It appears to relieve convulsion, inflammation (and thereby also migraines), anxiety and nausea. That is why strains with a high concentration of CBD is suitable for medicinal use.
Although CBD has its own particular medicinal value it is not more important than THC when it comes to treating various afflictions. It is the interaction between the two that gives rise to the effect that sometimes alleviates the symptoms of various medical conditions.
CBD has a greater affinity for the CB2 receptor than for the CB1 receptor, meaning that its effect is mostly in the body and not so much in the head. CBD shares a precursor with THC and is the main cannabinoid in low-THC cannabis strains like hemp.
Landrace strains, usually of indica heritage, contain higher concentrations of CBD than recreational drug strains, which are usually bred towards a higher concentration of THC. This is the reason why strains containing high ratios of CBD can be difficult to find.
TETRAHYDROCANNABINOL (THC)
Tetrahydrocannabinol, also known as delta-9-tetrahydrocannabinol (Δ9-THC), is the primary psychoactive component found in the cannabis plant. It was first isolated by Raphael Mechoulam, Yechiel Gaoni, and Habib Edery from the Weizmann Institute of Science in Rehovot, Israel, in 1964.
This is the main compound that gives rise to the high that is tightly linked with the cannabis plant. It affects several areas of the brain simultaneously and can therefore give rise to an assortment of experiences, ranging from altered perception of time and the self, to feelings of euphoria and relaxation all through the body.
Medically, it appears to be analgetic, meaning that it is capable of alleviating even severe pain. It is also known to be neuroprotective, which rules out the possibility of brain damage, which was initially proposed to follow from heavy use of the plant. It has approximately equal affinity for the CB1 and CB2 receptors. By binding to CB1 receptors (the ones in brain) it produces the high that we are so familiar with. That is why the effects of THC is more cerebral, than the effect of CBD, which seems to have a greater affinity for the CB2 receptor.
TETRAHYDROCANNABIVARIN (THCV)
THCV is the propyl homologue of THC and is similar in structure. The propyl cannabinoids have so far been found in some varieties originating from Southeast and Central parts of Asia as well as Africa, Afghanistan, Pakistan, India and Nepal. What are considered some of the most potent marijuana varieties also contain propyl cannabinoids. Some examples include traditional African landrace sativas as well as pure Thai varieties and various hybrids known as Haze.
There are no reports on its activity in humans. From animal studies it appears to be much faster in onset and quicker to dissipate than THC. It appears that it's activity is somewhat less than of THC. THCV is known for removing the "ceiling" from the high, giving the smoker the impression that he only gets higher with every passing minute until the effect eventually wears off.
CANNABINOL (CBN)
Cannabinol is the primary degradation product of THC and increases in concentration with plant age. The concentration of this product in the bud is heavily dependent on the time of harvest. Harvesting the bud at a late stage also means that the concentration of CBN in relation to THC will be higher when compared to the peak of THC production.
CBN content also increases as THC degrades during storage and with exposure to light and air. It is only mildly psychoactive and can cause "fuzzy head", drowsiness, disorientation and sleepiness in the smoker. (That is why amber trichomes are confused for giving a CBD couchlock, it causes a fuzzy head, drowsiness, disorientation and sleepiness in the smoker, all things wrongly believed to be actual true couchlock, but they come at the cost of lost THC, at the cost of reduced amounts of THC, at the cost of THC that has oxidized and become a less desirable chemical element. If someone wants couchlock, search for strains with the highest percentage of CBD and then harvest when milky/cloudy and you will have the highest percentage level of THC the stain can give and the most couchlock too.)
THC BIOSYNTHESIS
In order to fully understand and appreciate the most important cannabinoids, we first have to take a look at how they are produced inside the plant from lesser, precursor compounds.
By looking at this picture we get a better view of the metabolic pathway that leads to the desired psychoactive product called THC.
The metabolic chain that leads to THC starts when geranyl pyrophosphate combines with olivetolic acid, in order to create cannabigerolic acid (CBGA). This carboxylic acid is the shared precursor of all the three major cannabinoids that can be found in the plant; THC, CBD and CBC.
The cannabigerolic acid then forms into the carboxylic acid precursor of each of the named compounds. Cannabichromenic acid (CBCA) turns into the nonpsychoactive compound CBC. Cannabidiolic acid (CBDA) turns into the therapeutic cannabinoid CBD and finally tetrahydrocannabinolic acid (THCA) turns into the much sought after and highly psychoactive cannabinoid THC or tetrahydrocannabinol.
The carboxylic acids are characterized by the presence of the carboxyl group (-COOH). The carboxyl group splits off from the acid compounds through a process called decarboxylation, giving rise to CO2 in the process. This happens with age (curing) or when they are heated (smoked), effectively turning them into the final products. The curing process that the buds go through inside the jars, can actually be considered a slow decarboxylation process, so the result is the same. This however means that the plant can contain both the carboxylic acid form of THC as well as the finished product. More or less, depending on when it is measured.
THC later oxidizes and is reduced into CBN further down the chain, which is why we keep our buds in airtight jars. The oxidation process is also sped up with high temperature and light, which is why it's a good idea to store your buds in a cool and dark place. The process cannot however be halted completely, which means that very old bud will contain mostly this degradation product.The capitate-stalked glandular trichome changes color as it matures. Newly formed and immature glands are clear, glands reaching optimum THC production are cloudy or milky and amber trichomes have already passed their peak. By looking at the trichomes you can also determine the best time to harvest your plants. When most trichomes have gone cloudy and a few amber ones have appeared, the plant is at its peak.
I doubt that so much as one lost THC that has oxidized into CBN filled amber trichomes lovers will accept a single word of the above, but it is all fact.