It actually has a bunch to do with it,
How Is Gene Expression Increased or Decreased in Response to Environmental Change?
In prokaryotes, regulatory proteins are often controlled by nutrient availability. This allows organisms such as bacteria to rapidly adjust their transcription patterns in response to environmental conditions. In addition, regulatory sites on prokaryotic DNA are typically located close to transcription promoter sites — and this plays an important part in gene expression.
For an example of how this works, imagine a bacterium with a surplus of amino acids that signal the turning "on" of some genes and the turning "off" of others. In this particular example, cells might want to turn "on" genes for proteins that metabolize amino acids and turn "off" genes for proteins that synthesize amino acids. Some of these amino acids would bind to positive regulatory proteins called
activators. Activator proteins bind to regulatory sites on DNA nearby to promoter regions that act as on/off switches. This binding facilitates RNA polymerase activity and transcription of nearby genes. At the same time, however, other amino acids would bind to negative regulatory proteins called
repressors, which in turn bind to regulatory sites in the DNA that effectively block RNA polymerase binding.
I have spent years figuring out what triggers what response in these plants, hell I even wrote a book about it