Tell me interesting shit.

forgetfulpenguin

Active Member
Did you know you can build a microgram electrobalance at home. The most expensive part will probably be the calibration weight but you need a set anyway.

https://www.erowid.org/archive/rhodium/chemistry/equipment/scale.html
Microgram balances are clever devices that can measure fantastically tiny masses. Top-of-the-line models employ an ingenious combination of mechanical isolation, thermal insulation and electronic wizardry to produce repeatable measurements down to one tenth of a millionth of one gram. With their elaborate glass enclosures and polished goldplated fixtures, these balances look more like works of art than scientific instruments. New models can cost more than $10,000 and often require a master's touch to coax reliable data from background noise.

But for all their cost and outward complexity, these devices are in essence quite simple. One common type uses a magnetic coil to provide a torque that delicately balances a specimen at the end of a lever arm. Increasing the electric current in the coil increases the torque. The current required to offset the weight of the specimen is therefore a direct measure of its mass. The coils in commercial balances ride on pivots of polished blue sapphire. Sapphires are used because their extreme hardness (only diamonds are harder) keeps the pivots from wearing. Sophisticated sensing devices and circuitry control the current in the coil - which is why microgram electrobalances are so pricey.

And that is good news for amateurs. If you are willing to substitute your eyes for the sensors and your hands for the control circuits, you can build a delicate electrobalance for less than $30.
https://www.erowid.org/archive/rhodium/chemistry/equipment/scale2.html
Take for instance the problem of measuring extremely tiny masses. George Schmermund developed a fantastic approach, which I described in these pages in June 1996. George extracted the coil and armature from a discarded galvanometer and mounted them upright, so that the needle of the meter moved in a vertical plane. He then connected the coil to a variable voltage and adjusted it until the needle was exactly horizontal. A tiny mass of known weight placed at the end of the needle pulled it downward. George then increased the voltage until the arm returned to its starting position. Because a heavier mass required a proportionally larger increase in voltage to balance it, the change in voltage indicated the weight of a sample. George's electrobalance was able to weigh masses as small as 10 micrograms (that is, 10 millionths of a gram).

That achievement was stunning enough for me, but recently the organizer of our weekly outings, Greg Schmidt, realized that even this amazing performance could be improved on. Greg's design eliminates the need to adjust the needle manually: the balance automatically zeros (or "tares") and levels itself, and it can continuously track how an object changes in mass—the rate at which a single ant loses water through respiration, for instance. The result is an extremely versatile electrobalance with microgram sensitivity that can be built for less than $100.
$20 says somebodies kid is going to win a science fair thanks to this post.
 
Top