I do know that a 205 W LED system produced one gram per watt when a 400W MH lamp produced only 0.69 grams per watt. LED was 203 grams dried and hid was 268 grams dried. Sure the hid produced more, it used 195W more than the LED did. Had it been 400W LED and 400W HID, the LED would have blown the HID away.
Why do we get to see comparison grows of a 90W vs a 400W hid lamp? Of course the 400W is going to produce more bud, it's kicking 310W more than the UFO, it sure better produce more. How about 5 UFO's against a 400w HID lamp? The LED would kick it's ass.
Also your claim that LED buds are lighter or less dense couldn't be further from the truth. Many LED growers have reported denser buds with a higher potency, including High Times Magazine.
Quoted from High Times Magazine:
May 24th, 2009
In three separate trials, a high-powered LED (prototypes of HID Hut’s UFO) was run in side-by-side experiments – once against a 400-watt MH bulb, once against a 400-watt HPS bulb, and once against a 600-watt HPS bulb. These trials used exactly the same conditions on both sides of the fence. The plants were cuttings taken from a single mother; the medium and grow systems were the same; and the nutrients and atmospheric conditions were kept identical. The only variable was the lamp provided. And, as usual, the results varied.
In Trial A, the clones were placed in a three-by-six-foot box that was divided evenly in half. An ebb-and-flow table on each side shared the same grow medium and reservoir. In the end, the LED lamp yielded 12% more than its counterpart, the 400-watt MH.
In Trial B, similar systems again pitted the UFO against a 400-watt HPS, only this time the LED side took an extra week to finish. Some concern arose over stretching, as the clone grew to touch the UFO. This resulted in a decision to increase the blue diodes in a second prototype, and it may lead to an increase in wavelength for the red diodes, according to the manufacturer. In the end, the LED side yielded 5% less than the HPS side did.
However, it was reported in Trial B that there were markedly different potencies, with the LED plant producing much more resin. Speculation exists that the shortage of wavelengths aided in this process, as abnormal stresses have been known to increase the production of resin glands. Final calculations taking into consideration the extra week of flowering time on the LED side found that in terms of grams yielded per kilowatt hour (KwH) consumed, the HPS yield was one-fourth that of the LED side.
In Trial C, the grower found similarities to both previous trials. While the LED yielded less than its counterpart, this test pushed the limits of the LED by pitting it against a stronger 600-watt HPS bulb. Resin production on this Cali-O strain was up after just four weeks of flowering, but in the end, the yield was around 20% less. However, the grower did note that the amount of money saved in electric costs compared against the costs of the 600-watt HPS was almost enough to offset the profits lost on yield. An interesting side note in this trial was that the plant on the LED side needed considerably less watering than the plant on the HPS side. It is possible that this is due to lower surface temperatures in the soil medium, or because the plant wasn’t driven as hard and thus drank less.
Anyway you slice it, this one’s a real mind-bender. Given the possibilities for vast improvements down the line, the LED revolution could very well be underway already. Will the LED Zeppelin (or the UFO) take off and change the world? For the present, things are certainly looking up.
This info was provided to Whyteberry in the past and his only response was "where is the proof?" Apparently he doesn't deem High Times as a reliable source of information.